
Mike Anderson
(robot_maker12@verizon.net)

Herndon High School

FRC Team #116

C/C++ and Java Installation

For 2020 FRC Teams

FRC C++-Introduction-2 ED- FRC Team #116

What We’ll Talk About

▪ Goals

▪ The development environment

▪ Talking to the RoboRIO

▪ Making it move

▪ Resources

▪ Summary

FRC C++-Introduction-3 ED- FRC Team #116

Goals

▪ The goal of this presentation is to help you
understand how to prepare your development
environment for use with C/C++ and Java

▪ We clearly can’t explain all of the aspects
because we have limited time

 But, you should leave here with a better
understanding of the process

▪ We will be talking about the set up rather than
the languages themselves

 The WPILib is equivalent between the
environments

FRC C++-Introduction-4 ED- FRC Team #116

Warning: Beta Code…

▪ What you will see is the 2020
Beta software that we’ve been
working with over the past
couple of months

▪ Some things are likely to change, but it’s
pretty feature complete at this point

▪ There were quite a bit of head scratching while
we were working with getting things running

 There have been some significant changes in the
RoboRIO FPGA code concerning CAN bus and
that impacts all CAN-centric operations

FRC C++-Introduction-5 ED- FRC Team #116

Why C/C++?

▪ C/C++ is a standard in embedded systems
programming for over 30 years
 It’s still the most predominant language in embedded

Linux, the IoT and the real-time operating system (RTOS)
world
• This gives your team valuable real-world experience

▪ It’s compiled to native machine code
 No virtual machine interpreters

• No pausing due to garbage collection

 It’s fast

▪ It’s the native language of the RoboRIO’s Linux-based
operating system
 The environment is written in C and Assembler
 You get easy, direct access to the underlying OS

▪ C++ is object oriented
 Full support from WPILib

FRC C++-Introduction-6 ED- FRC Team #116

Why Not C/C++?

▪ C/C++ is compiled
 This adds complexity to the build

▪ C/C++ is textual
 There are no cutesy GUIs with lots of obscure

symbols and squiggly lines ☺

▪ There is no VM to catch your mistakes
 The syntax is similar to Java

• Java was derived from C++
• Java VM is written in C/C++

▪ C/C++ has pointers
 Objects can be referenced in many different ways
 This concept can be troublesome for some

developers
 Java calls pointers “references”

FRC C++-Introduction-7 ED- FRC Team #116

Why Java?

▪ Java has wide support in the industry
 Object-oriented approach with lots of reference material

▪ Java is the language used on the AP exams
 Used in many computer science classes

▪ Java is a byte-code interpreted language
 The use of the Virtual Machine (VM) allows for many

dynamic language features

▪ The VM will help catch some common memory
mistakes

▪ The version of Java used on the RoboRIO is the
OpenJDK V11.0.4

▪ WPILib is actually written in Java and then translated
to C++

FRC C++-Introduction-8 ED- FRC Team #116

Why Not Java?

▪ Java is interpreted
 Performance is lower than C/C++

▪ Java is also textual like C++
 But, Java can be written using either imperative or

declarative programming styles

▪ The version of Java on the RoboRIO is not
optimized for use in control systems
 The version is actually targeted at business

applications

▪ Garbage collection cycle will cause the robot to
hesitate during the mark-and-sweep cycle
 Given the length of our matches, this should not be a

problem

FRC C++-Introduction-9 ED- FRC Team #116

Top 7 Languages – Dec 2019

▪ LabVIEW was #42 on this

list

 This represents a 7 place

drop from 2019

FRC C++-Introduction-10 ED- FRC Team #116

Some Useful Info…

▪ The RoboRIO runs Linux

 SSH server is available
• Use Putty on Windows to get

to SSH shell

 File transfers from IDE use SCP

▪ Addressing is via mDNS

 roborio-<team #>-FRC.local

▪ The Web server on the
RoboRIO is being redesigned
at this time so we don’t quite know what it
will look like yet

▪ Do not delete “admin” account or change its password

 All program transfers require it

FRC C++-Introduction-11 ED- FRC Team #116

The Development Environment

▪ The FIRST-supported development platform for
C/C++ and Java is Microsoft Visual Studio Code
tool
 Available for Windows, MacOS and Linux

 The compiler is the open-source GCC 7.3 compiler
• Supports C++11 extensions

▪ The C compiler is actually a cross-compiler
 We are building on an x86 for an ARM-based system

• Again, this is a standard approach for commercial,
embedded development

▪ For Java, the build system will run the Java
source code through the OpenJDK to produce
Java bytecode

FRC C++-Introduction-12 ED- FRC Team #116

Development Environment #2

▪ The installation tool will install the OpenJDK

 And, install VSCode if you select that option

 It will install both C/C++ and Java by default

▪ The build environment is the GradleRIO plug-

in from Github

 https://github.com/wpilibsuite/GradleRIO

 Uses Gradle V6

▪ The WPILib VSCode plug-in will have all of

the tools needed to build and deploy code to

the robot

FRC C++-Introduction-13 ED- FRC Team #116

Install National Instruments Update

▪ It’s probably best if you uninstall previous
versions
 It will take at least 10-20 minutes to install

• Longer if you need to uninstall the previous version

▪ This will also install the FRC Driver Station
application
 This will also install the RoboRIO imaging tool and

the latest image release
• They are still having problems with the firmware update, but

the image update works fine
– We assume they’ll get this working soon

▪ The system will need to reboot after installation

FRC C++-Introduction-14 ED- FRC Team #116

2020 Driver Station

FRC C++-Introduction-15 ED- FRC Team #116

Getting Your RoboRIO Ready

▪ Before you can start

development, you’ll need

to make sure that your

RoboRIO has the proper

operating system

image on it

 This is accomplished

using the RoboRIO imaging

tool or it can be done through LabVIEW

▪ Java runtime engine will be installed when you

deploy your first Java program to the RoboRIO

FRC C++-Introduction-16 ED- FRC Team #116

Update the RoboRIO

FRC C++-Introduction-17 ED- FRC Team #116

Launch the WPILib/tools Install

▪ Unlike last year, the WPILib tools are

extracted from a separate archive

 ~ 2.6 GBs for the zipped download

▪ We’ll look at the Windows installation, but

there are install steps for both MacOS and

Linux as well

FRC C++-Introduction-18 ED- FRC Team #116

Installation of Visual Studio Code

▪ In theory, you should be able to use an
existing VSCode installation

 That didn’t work too well in the Beta, so we opted
to allow the installation tool to install VSCode for
us

▪ The installation will take about 10 minutes

 There are still some manual settings that you’ll
need to do with search paths for the JDK and the
JAVA_HOME environment variable
• Requires that you run a script to update these things

 Presumably, these things will be taken care of by
kickoff

FRC C++-Introduction-19 ED- FRC Team #116

Installing WPILib/VSCode

FRC C++-Introduction-20 ED- FRC Team #116

The VSCode with WPILib Extension

FRC C++-Introduction-21 ED- FRC Team #116

Creating a Project #1

FRC C++-Introduction-22 ED- FRC Team #116

Creating a Project #2

FRC C++-Introduction-23 ED- FRC Team #116

Create a Project #3

FRC C++-Introduction-24 ED- FRC Team #116

Build and Deploy

FRC C++-Introduction-25 ED- FRC Team #116

Install the Third-Party Libraries

▪ The CTRE, REV and Kauaii Labs libraries are
unbundled from the WPILib development environment
 You will need to install these libraries separately into the

VSCode workspace

▪ CAN bus is a feature now of several FRC-legal motor
controllers

▪ For CTRE/VexPro motor controllers, you will need to
install the CTRE Phoenix framework onto your platform
 The Phoenix Diagnostics application will enable you to

update your CAN firmware for the PDP, PCM, Talon SRX
and Victor SPX devices

▪ You’ll need to add the libraries and header files to the
search path of your project using the VSCode external
library mechanism

FRC C++-Introduction-26 ED- FRC Team #116

Configure CAN Bus (CTRE)

FRC C++-Introduction-27 ED- FRC Team #116

Install 3rd-Party Library into Your Project

▪ Before you can use the 3rd-party libraries,

you’ll need to import them into your project

FRC C++-Introduction-28 ED- FRC Team #116

3rd-Party #2

▪ Select the “Install new libraries (offline)” and

then select the library you want to install

FRC C++-Introduction-29 ED- FRC Team #116

3rd-Party #3

▪ Once the library is installed in your project,

you can start using the features it provides

▪ You’ll need to make sure you’ve got the

header files or imports listed

 Or, the build will fail miserably

▪ Once built, you can deploy the 3rd-party

goodness to the robot

FRC C++-Introduction-30 ED- FRC Team #116

Example Java Robot Program

FRC C++-Introduction-31 ED- FRC Team #116

Resources

▪ Chief Delphi
http://www.chiefdelphi.com

▪ FIRST forums
http://forums.usfirst.org

▪ NI Community Forums
http://ni.com/FIRST

▪ WPI / FIRST NSF Community site (ThinkTank)

▪ These sites are monitored by members of:
WPI
NI
FIRST

▪ All source code available for team<->team
assistance

▪ Phone support through NI
866-511-6285 (1PM-7PM CST, M-F) ?

FRC C++-Introduction-32 ED- FRC Team #116

Summary

▪ C/C++ can be very challenging to new developers
 C/C++ is similar enough to Java that Java developers can

adapt to it quickly
• However, pointers will require some explaining

 Performance and fine-grain control are the biggest advantages
to using C/C++

▪ Java has a lot of support within the FIRST community and
many school systems
▪ Being on the AP CS exam encourages schools to teach it

▪ Java is also used in the new FTC development environment
▪ Although the Java VM is slightly different for Android

▪ WPILib class libraries have equivalent capability between
C++ and Java versions

▪ Java and C++ are syntactically very similar
▪ You could start with one and then switch without too much

trouble

